The petD gene is transcribed by functionally redundant promoters in Chlamydomonas reinhardtii chloroplasts.

Author:

Sturm N R,Kuras R,Büschlen S,Sakamoto W,Kindle K L,Stern D B,Wollman F A

Abstract

FUD6, a nonphotosynthetic mutant of Chlamydomonas reinhardtii, was previously found to be deficient in the synthesis of subunit IV of the cytochrome b6/f complex, the chloroplast petD gene product (C. Lemaire, J. Girard-Bascou, F.-A. Wollman, and P. Bennoun, Biochim. Biophys. Acta 851:229-238, 1986). The lesion in FUD6 is a 236-bp deletion between two 11-bp direct repeats in the chloroplast genome. It extends from 82 to 72 bp upstream of the 5' end of wild-type petD mRNA to 156 to 166 bp downstream of the 5' end. Thus, the deletion extends into the putative promoter and 5' untranslated region of petD. No petD mRNA of the normal size can be detected in FUD6 cells, but a low level of a dicistronic message accumulates, which contains the coding regions for subunit IV and cytochrome f, the product of the upstream petA gene. petD transcriptional activity in FUD6 is not significantly altered from the wild-type level. This transcriptional activity was eliminated by petA promoter disruptions, suggesting that it originates at the petA promoter. We conclude that the petD-coding portion of most cotranscripts is rapidly degraded in FUD6, possibly following processing events that generate the 3' end of petA mRNA. A chloroplast transformant was constructed in which only the sequence from -81 to -2 relative to the major 5' end of the petD transcript was deleted. Although this deletion eliminates all detectable petD promoter activity, the transformant grows phototrophically and accumulates high levels of monocistronic petD mRNA. We conclude that the petD gene can be transcribed by functionally redundant promoters. In the absence of a functional petD promoter, a lack of transcription termination allows the downstream petD gene to be cotranscribed with the petA coding region and thereby expressed efficiently.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3