Author:
Katiyar Santosh K.,Alastruey-Izquierdo Ana,Healey Kelley R.,Johnson Michael E.,Perlin David S.,Edlind Thomas D.
Abstract
ABSTRACTThe echinocandins caspofungin, micafungin, and anidulafungin, inhibitors of cell wall β-1,3-glucan synthesis, were recently elevated to first-line agents for treating infections due to the azole-refractory yeastCandida glabrata. InCandida albicans, echinocandin resistance is strictly associated with mutations in Fks1, a large integral membrane protein and putative β-1,3-glucan synthase, while mutations in both Fks1 and its paralog Fks2 (but not Fks3) have been associated with resistance inC. glabrata. To further explore their function, regulation, and role in resistance,C. glabratafksgenes were disrupted and subjected to mutational analysis, and their differential regulation was explored. Anfks1Δfks2Δ double disruptant was not able to be generated; otherwise, all three single and remaining two double disruptants displayed normal growth and echinocandin susceptibility, indicating Fks1-Fks2 redundancy. Selection on echinocandin-containing medium for resistant mutants was dependent on strain background: onlyfks1Δ andfks1Δfks3Δ strains consistently yielded mutants exhibiting high-level resistance, all with Fks2 hot spot 1 mutations. Thus, Fks1-Fks2 redundancy attenuates the rate of resistance; further analysis showed that it also attenuates the impact of resistance-conferring mutations. Growth of thefks1Δ and, especially,fks1Δfks3Δ strains was specifically susceptible to the calcineurin inhibitor FK506. Relatedly, FK506 addition or calcineurin geneCMP2disruption specifically reversed Fks2-mediated resistance of laboratory mutants and clinical isolates. RNA analysis suggests that transcriptional control is not the sole mechanism by which calcineurin modulates Fks2 activity.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献