Superior Protection from Live-Attenuated Vaccines Directed against Johne's Disease

Author:

Shippy Daniel C.1,Lemke Justin J.1,Berry Aubrey2,Nelson Kathryn3,Hines Murray E.4,Talaat Adel M.12

Affiliation:

1. Pan Genome Systems, Madison, Wisconsin, USA

2. Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA

3. Research Animal Resources Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

4. Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, Georgia, USA

Abstract

ABSTRACT Mycobacterium avium subsp. paratuberculosis ( M. paratuberculosis ) is the etiological agent of Johne's disease in ruminants. Johne's disease is an important enteric infection causing large economic losses associated with infected herds. In an attempt to fight this infection, we created two novel live-attenuated vaccine candidates with mutations in sigH and lipN (pgsH and pgsN, respectively). Earlier reports in mice suggested these vaccines are promising candidates to fight Johne's disease in ruminants. In this study, we tested the performances of the two constructs as vaccine candidates using the goat model of Johne's disease. Both vaccines appeared to provide significant immunity to goats against challenge from wild-type M. paratuberculosis . The pgsH and pgsN constructs showed a significant reduction in histopathological lesions and tissue colonization compared to nonvaccinated goats and those vaccinated with an inactivated vaccine. Unlike the inactivated vaccine, the pgsN construct was able to eliminate fecal shedding from challenged animals, a feature that is highly desirable to control Johne's disease in infected herds. Furthermore, strong initial cell-mediated immune responses were elicited in goats vaccinated with pgsN that were not demonstrated in other vaccine groups. Overall, the results indicate the potential use of live-attenuated vaccines to control intracellular pathogens, including M. paratuberculosis , and warrant further testing in cattle, the main target for Johne's disease control programs.

Funder

USDA-NIFA

USDA

USDA-Wisconsin Agriculture Station

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3