The Internal Transcribed Spacer Region, a New Tool for Use in Species Differentiation and Delineation of Systematic Relationships within the Campylobacter Genus

Author:

Man Si Ming1,Kaakoush Nadeem O.1,Octavia Sophie1,Mitchell Hazel1

Affiliation:

1. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia

Abstract

ABSTRACT The Campylobacter genus consists of a number of important human and animal pathogens. Although the 16S rRNA gene has been used extensively for detection and identification of Campylobacter species, there is currently limited information on the 23S rRNA gene and the internal transcribed spacer (ITS) region that lies between the 16S and 23S rRNA genes. We examined the potential of the 23S rRNA gene and the ITS region to be used in species differentiation and delineation of systematic relationships for 30 taxa within the Campylobacter genus. The ITS region produced the highest mean pairwise percentage difference (35.94%) compared to the 16S (5.34%) and 23S (7.29%) rRNA genes. The discriminatory power for each region was further validated using Simpson's index of diversity ( D value). The D values were 0.968, 0.995, and 0.766 for the ITS region and the 23S and 16S rRNA genes, respectively. A closer examination of the ITS region revealed that Campylobacter concisus , Campylobacter showae , and Campylobacter fetus subsp. fetus harbored tRNA configurations not previously reported for other members of the Campylobacter genus. We also observed the presence of strain-dependent intervening sequences in the 23S rRNA genes. Neighbor-joining trees using the ITS region revealed that Campylobacter jejuni and Campylobacter coli strains clustered in subgroups, which was not observed in trees derived from the 16S or 23S rRNA gene. Of the three regions examined, the ITS region is by far the most cost-effective region for the differentiation and delineation of systematic relationships within the Campylobacter genus.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3