Insights into the Metabolism and Evolution of the Genus Acidiphilium , a Typical Acidophile in Acid Mine Drainage

Author:

Li Liangzhi12,Liu Zhenghua12,Zhang Min12,Meng Delong12,Liu Xueduan12,Wang Pei3,Li Xiutong3,Jiang Zhen3,Zhong Shuiping45,Jiang Chengying3,Yin Huaqun12ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha, China

2. Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China

3. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

4. College of Zijin Mining, Fuzhou University, Fuzhou, China

5. National Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Shanghang, China

Abstract

Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.

Funder

CSU | Fundamental Research Funds for Central Universities of the Central South University

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3