Influence of the Cytochrome P450 2B6 Genotype on Population Pharmacokinetics of Efavirenz in Human Immunodeficiency Virus Patients

Author:

Cabrera Salvador E.12,Santos Dolores3,Valverde María P.1,Domínguez-Gil Alfonso13,González Francisco3,Luna Guillermo4,García María J.3

Affiliation:

1. Pharmacy Service, University Hospital of Salamanca, Salamanca, Spain

2. Pharmacy Institute, University Austral of Chile, Valdivia, Chile

3. Department of Pharmacy and Pharmaceutical Technology, University of Salamanca, Salamanca, Spain

4. Infectious Disease Service, University Hospital of Salamanca, Salamanca, Spain

Abstract

ABSTRACT A population pharmacokinetic model for efavirenz has been developed from therapeutic drug monitoring data in human immunodeficiency virus (HIV)-positive patients by using a nonlinear mixed-effect model. The efavirenz plasma concentrations ( n = 375) of 131 patients were analyzed using high-performance liquid chromatography with UV detection. Pharmacokinetic parameters were estimated according to a one-compartment model. The effects of sex, age, total body weight, height, body mass index, and HIV treatment were analyzed. In a subgroup of 32 patients, genetic polymorphisms of the cytochrome P450 2B6 gene ( CYP2B6 ), CYP3A4 , and MDR1 were also investigated. Efavirenz oral clearance and the apparent volume of distribution were 9.50 liters/h and 311 liters, respectively. The model included only the effect of CYP2B6 polymorphisms on efavirenz clearance; this covariate reduced the intersubject variability of clearance by about 27%. Patients showing G/T and T/T CYP2B6 polymorphisms exhibited efavirenz clearances that were about 50% and 75% lower than those observed in the patients without these polymorphisms (G/G). Accordingly, to obtain EFV steady-state concentrations within the therapeutic range (1 to 4 mg/liter), it would be advisable to implement a gradual reduction in dose to 400 or 200 mg/day for patients that are intermediate or poor metabolizers, respectively. However, the remaining interindividual variability observed in the pharmacokinetic parameters of the model highlights the need for dose individualization to avoid inadequate exposure to efavirenz and suggests that these recommended doses be used with caution and confirmed by therapeutic drug monitoring and clinical efficacy. The population model can be implemented in pharmacokinetic clinical software for dosage optimization by using the Bayesian approach.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3