Synthesis, Bioactivity Evaluation, and Toxicity Assessment of Novel Salicylanilide Ester Derivatives as Cercaricides against Schistosoma japonicum and Molluscicides against Oncomelania hupensis

Author:

Wang Weisi1,Qin Zhiqiang1,Zhu Dan1,Wei Yufen1,Li Shizhu1,Duan Liping12

Affiliation:

1. National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China

2. Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China

Abstract

ABSTRACT A series of novel salicylanilide ester derivatives were synthesized, characterized, and evaluated for cercaricidal potential against Schistosoma japonicum and molluscicidal potential against Oncomelania hupensis . Four derivatives exhibited remarkable cercaricidal activity superior to that of niclosamide. Among them, the most active compound, 4-chloro-2-((2-methoxy-4-nitrophenyl)carbamoyl)phenyl 4-methoxybenzoate (compound 4c), showed a marked minimum effective cercaricidal concentration as low as 0.43 μM and significant molluscicidal activity, with a 50% lethal concentration (LC 50 ) of 0.206 g/m 2 . Particularly, compound 4c displayed 88-fold decreased fish toxicity on Danio rerio and 44-fold reduced cytotoxicity on human kidney HEK293 cells in comparison with the toxicity of niclosamide. The results indicated that 4c could serve as a promising drug candidate, with environmental safety properties, against Schistosoma japonicum at transmission stages. The preliminary molecular mechanism of target compounds in Schistosoma japonicum cercariae was also investigated. Salicylanilide ester derivatives exhibited an inhibitory effect on nitric oxide synthase (NOS) but no effect on lactate dehydrogenase (LDH) and acetylcholinesterase (AChE), and a strong and significant correlation between NOS inhibitory efficacy and cercaricidal activity was observed. In addition, 4c could downregulate the expression of NOS in a dose-dependent manner. These results suggested that NOS was probably one of the drug targets of salicylanilide esters.

Funder

Natural Science Foundation of Shanghai

Opening Project of Shanghai Key Labratory of New Drug Design

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3