Evidence for Multiple Molecular Forms of Yeast β-Glucosidase in a Hybrid Yeast

Author:

Fleming Leslie W.1,Duerksen Jacob D.1

Affiliation:

1. Department of Microbiology, University of Kansas School of Medicine, Kansas City, Kansas

Abstract

A mixture of β-glucosidases from Saccharomyces fragilis (Y-18) and S. dobzhanskii (Y-19) eluted from diethylaminoethyl cellulose in two peaks, whereas the enzyme from a hybrid, S. fragilis × S. dobzhanskii (Y-42), eluted in a single broad peak. The highest Y-42 activity fractions eluted at a sodium chloride molarity which was intermediate to the molarities at which most of the Y-18 and Y-19 activity was eluted. In cellulose polyacetate strips, Y-42 enzyme migrated as a diffuse band which spanned the distances migrated by the enzymes from the parent yeast strains. Antisera against either Y-18 or Y-19 enzyme precipitated 80 to 90% of Y-42 enzyme activity. When Y-42 enzyme was dissociated by heat or urea and reacted with parental antiserum, a concomitant increase in the opposite parental activity was demonstrable in both precipitation and complement-fixation (CF) tests. Urea-dissociated β-glucosidases were resolvable by sucrose-gradient centrifugation into multiple bands displaying specific CF activity. When the enzymes were exposed to 4 m urea for 12 min, particles of approximately 110,000 molecular weight were obtained. By extending the exposure time to 40 min, and incorporating 0.5 m urea in the gradients, smaller particles were detected with molecular weights ranging from 18,000 to 23,000. Attempts to regenerate enzyme activity after dissociation with urea were only moderately successful. Results suggested that a slightly acidic environment favored reassociation, as did the presence of 2-mercaptoethanol. Residual urea also seemed important. It is proposed that the structural genes for both Y-18 and Y-19 enzyme are present in Y-42 cells with either independent or closely interacting regulatory mechanisms. Since synthesis of the two parental-type polypeptides may be unequal, the availability of enzyme subunits for subsequent polymerization in the cell cytoplasm might be equalized at the polysome level. Random association of subunits would produce a binomial distribution of true hybrid enzyme molecules.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3