Coreceptor Tropism Can Be Influenced by Amino Acid Substitutions in the gp41 Transmembrane Subunit of Human Immunodeficiency Virus Type 1 Envelope Protein

Author:

Huang Wei1,Toma Jonathan1,Fransen Signe1,Stawiski Eric1,Reeves Jacqueline D.1,Whitcomb Jeannette M.1,Parkin Neil1,Petropoulos Christos J.1

Affiliation:

1. Monogram Biosciences, South San Francisco, California

Abstract

ABSTRACT Many studies have demonstrated that the third variable region (V3) of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is a major determinant of coreceptor tropism. Other regions in the surface gp120 subunit of Env can modulate coreceptor tropism in a manner that is not fully understood. In this study, we evaluated the effect of env determinants outside of V3 on coreceptor usage through the analysis of (i) patient-derived env clones that differ in coreceptor tropism, (ii) chimeric env sequences, and (iii) site-directed mutants. The introduction of distinct V3 sequences from CXCR4-using clones into an R5-tropic env backbone conferred the inefficient use of CXCR4 in some but not all cases. Conversely, in many cases, X4- and dual-tropic env backbones containing the V3 sequences of R5-tropic clones retained the ability to use CXCR4, suggesting that sequences outside of the V3 regions of these CXCR4-using clones were responsible for CXCR4 use. The determinants of CXCR4 use in a set of dual-tropic env sequences with V3 sequences identical to those of R5-tropic clones mapped to the gp41 transmembrane (TM) subunit. In one case, a single-amino-acid substitution in the fusion peptide of TM was able to confer CXCR4 use; however, TM substitutions associated with CXCR4 use varied among different env sequences. These results demonstrate that sequences in TM can modulate coreceptor specificity and that env sequences other than that of V3 may facilitate efficient CXCR4-mediated entry. We hypothesize that the latter plays an important role in the transition from CCR5 to CXCR4 coreceptor use.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3