High Major Histocompatibility Complex-Unrestricted Lysis of Simian Immunodeficiency Virus Envelope-Expressing Cells Predisposes Macaques to Rapid AIDS Progression

Author:

Yin Cheng1,Wu Mary S.1,Pauza C. David1,Salvato Maria S.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, Wisconsin 53706

Abstract

ABSTRACT Before the development of virus-specific immune responses, peripheral blood mononuclear cells (PBMC) from uninfected rhesus monkeys and human beings have the capacity to lyse target cells expressing simian immunodeficiency virus (SIV) or human immunodeficiency virus-1 (HIV) envelope (gp130 and gp120) antigens. Lysis by naive effector cells does not require major histocompatibility complex (MHC)-restricted antigen presentation, is equally effective for allogeneic and xenogeneic targets, and is designated MHC-unrestricted (UR) lysis. UR lysis is not sensitive to EGTA and does not require de novo RNA or protein synthesis. Several kinds of envelope-expressing targets, including cells that poorly express MHC class I antigens, can be lysed. CD4 + effectors are responsible for most of the lytic activity. High lysis is correlated with high expression of HIV or SIV envelope, specifically, the central one-third of the gp130 molecule, and lysis is completely inhibited by a monoclonal antibody against envelope. Our work extends observations of human lymphocytes expressing HIV gp120 to the SIV/rhesus monkey model for AIDS. Additionally, we address the relevance of UR lysis in vivo. A survey of PBMC from 56 uninfected rhesus monkeys indicates that 59% of the individuals had peak UR lytic activity above 15% specific lysis. Eleven of these monkeys were subsequently infected with SIV. Animals with UR lytic activity above 15% specific lysis were predisposed to more rapid disease progression than animals with low UR lytic activity, suggesting a strong correlation between this form of innate immunity and disease progression to AIDS.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3