Na+/H+ antiport activity conferred by Bacillus subtilis tetA(L), a 5' truncation product of tetA(L), and related plasmid genes upon Escherichia coli

Author:

Cheng J1,Baldwin K1,Guffanti A A1,Krulwich T A1

Affiliation:

1. Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029, USA.

Abstract

An Escherichia coli transformant expressing the Bacillus subtilis tetA(L) gene from a weak promoter was challenged by growth on medium with low, increasing tetracycline concentrations. Changes in the substrate preference ratios of the TetA(L)-mediated resistances and antiports were examined in view of recent findings suggesting that TetA(L) catalyzes efflux of Na+ in exchange for protons in addition to having the ability to catalyze metal-tetracycline/H+ antiport. After growth of the transformant on 1 microgram or more of tetracycline per ml for 12 to 15 h, the tetA(L) gene in the plasmid was found to be disrupted by an IS10 element 50 bp from the 5' end of the coding sequence. This disrupted recombinant plasmid, pKB1, conferred greater tetracycline resistance and higher levels of membrane metal-tetracycline/proton antiport than the original plasmid, pJTA1, but conferred lower NA+ resistance and Na+/H+ antiport levels than the original plasmid. The results indicate that the 5' end of the gene is necessary for optimal Na+/H+ antiport but that some such activity as well as robust tetracycline/H+ antiport persists in its absence. Two plasmid genes, tet(K) and qacA, were compared with tetA(L) vis-à-vis their abilities to enhance the Na+/H+ antiporter activity of everted vesicles from E. coli transformants. tet(K), which is more closely related to tetA(L), catalyzed 22Na+ uptake by energized vesicles, whereas the less closely related qacA gene did not.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3