Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics

Author:

Grebe T1,Hakenbeck R1

Affiliation:

1. Max-Planck Institut für Molekulare Genetik, Berlin, Germany.

Abstract

High-level resistance to beta-lactam antibiotics in Streptococcus pneumoniae is mediated by successive alterations in essential penicillin-binding proteins (PBPs). In the present work, single amino acid changes in S. pneumoniae PBP 2x and PBP 2b that result in reduced affinity for the antibiotic and that confer first-level beta-lactam resistance are defined. Point mutations in the PBP genes were generated by PCR-derived mutagenesis. Those conferring maximal resistance to either cefotaxime (pbp2x) or piperacillin (pbp2b) were obtained after transformation of the susceptible laboratory strain R6 with the PCR-amplified PBP genes and selection on agar with various concentrations of the antibiotic. In the case of PBP 2x, transformants for which the cefotaxime MIC was 0.16 microgram/ml contained the substitution of a Thr for an Ala at position 550 (Thr550-->Ala), close to the PBP homology box Lys547SerGly, a mutation frequently observed in laboratory mutants and in a high-level cefotaxime-resistant clinical isolate as well. After further selection, transformants resisting 0.3 microgram of cefotaxime per ml were obtained; they contained the substitution Gly550 as the result of two mutations in the same codon. In PBP 2b, Thr446-->Ala, adjacent to another homology box Ser443SerAsn, was the mutation selected with piperacillin. This substitution has been described in all clinical isolates with a low-affinity PBP 2b but was distinct from point mutations found in laboratory mutants. Both pbp2b with the single mutation and a mosaic pbp2b of a clinical isolate conferred a twofold increase in piperacillin resistance. Attempts to select PBP 2b variants at higher piperacillin concentrations were unsuccessful. The mutated PBP 2b also markedly reduced the lytic response to piperacillin, suggesting that such a mutation is an important step in resistance development in clinical isolates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3