Affiliation:
1. Institute for Microbial and Biochemical Technology, Forest Products Laboratory, U.S. Department of Agriculture Forest Service, Madison, Wisconsin 53705-2398
Abstract
The ability of two white rot fungi to deplete pentachlorophenol (PCP) from soil, which was contaminated with a commercial wood preservative, was examined in a field study. Inoculation of soil containing 250 to 400 μg of PCP g
−1
with either
Phanerochaete chrysosporium
or
P. sordida
resulted in an overall decrease of 88 to 91% of PCP in the soil in 6.5 weeks. This decrease was achieved under suboptimal temperatures for the growth and activity of these fungi, and without the addition of inorganic nutrients. Since the soil had a very low organic matter content, peat was included as a source of organic carbon for fungal growth and activity. A small percentage (8 to 13%) of the decrease in the amount of PCP was a result of fungal methylation to pentachloroanisole. Gas chromatographic analysis of sample extracts did not reveal the presence of extractable transformation products other than pentachloroanisole. Thus, when losses of PCP via mineralization and volatilization were negligible, as they were in laboratory-scale studies (R. T. Lamar, J. A. Glaser, and T. K. Kirk, Soil Biol. Biochem. 22:433-440, 1990), most of the PCP was converted to nonextractable soil-bound products. The nature, stability, and toxicity of soil-bound transformation products, under a variety of conditions, must be elucidated before use of these fungi in soil remediation efforts can be considered a viable treatment method.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献