Effects of molecular oxygen, oxidation-reduction potential, and antioxidants upon in vitro replication of Treponema pallidum subsp. pallidum

Author:

Cox D L1,Riley B1,Chang P1,Sayahtaheri S1,Tassell S1,Hevelone J1

Affiliation:

1. Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control, Atlanta, Georgia 30333.

Abstract

The effects of various concentrations of dithiothreitol, molecular oxygen, and several antioxidants upon the in vitro replication of Treponema pallidum were studied. The optimal dithiothreitol concentration was between 0.65 and 1.62 mM, and the optimum oxygen concentration was 3.0% +/- 0.5% in both the presence and absence of additional antioxidants. It was discovered that the reduced sulfhydryl concentration and the oxidation-reduction potential of the medium were stabilized after 5 days. The water-soluble antioxidants cobalt chloride, cocarboxylase, mannitol, and histidine were individually tested for their ability to increase treponemal growth in vitro. The optimum concentrations for these antioxidants were 21 nM, 4.3 nM, 0.55 mM, and 0.23 mM, respectively. When combined at these concentrations, the mixture of antioxidants stimulated the in vitro replication of T. pallidum. The number of treponemes in cultures with the antioxidants averaged a 59-fold increase, compared with a 43-fold increase in cultures lacking the antioxidants. It was further demonstrated that histidine and mannitol were the most critical components of this mixture. Catalase and superoxide dismutase were investigated for their ability to promote the growth and maintain viability of T. pallidum in tissue culture. The optimum concentrations for these enzymes were 10,000 U/liter and 25,000 U/liter, respectively. When these enzymes and the above antioxidants were combined and added to a chemically reduced modified Eagle medium, the treponemes increased an average of 70-fold, compared with an average of 35-fold in cultures lacking them. Furthermore, this medium, T. pallidum culture medium, supported the replication of T. pallidum at oxygen concentrations from 5 to 7% with little loss in yield or viability. The lipid-soluble antioxidants vitamin A and vitamin E acetate were also shown to enhance the in vitro growth of T. pallidum in this medium.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3