Host Transmission of Salmonella enterica Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota

Author:

Lawley Trevor D.1,Bouley Donna M.2,Hoy Yana E.1,Gerke Christine1,Relman David A.134,Monack Denise M.1

Affiliation:

1. Department of Microbiology and Immunology

2. Department of Comparative Medicine

3. Department of Medicine, Stanford University, Stanford, California, 94305

4. Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304

Abstract

ABSTRACT Transmission is an essential stage of a pathogen's life cycle and remains poorly understood. We describe here a model in which persistently infected 129X1/SvJ mice provide a natural model of Salmonella enterica serovar Typhimurium transmission. In this model only a subset of the infected mice, termed supershedders, shed high levels (>10 8 CFU/g) of Salmonella serovar Typhimurium in their feces and, as a result, rapidly transmit infection. While most Salmonella serovar Typhimurium-infected mice show signs of intestinal inflammation, only supershedder mice develop colitis. Development of the supershedder phenotype depends on the virulence determinants Salmonella pathogenicity islands 1 and 2, and it is characterized by mucosal invasion and, importantly, high luminal abundance of Salmonella serovar Typhimurium within the colon. Immunosuppression of infected mice does not induce the supershedder phenotype, demonstrating that the immune response is not the main determinant of Salmonella serovar Typhimurium levels within the colon. In contrast, treatment of mice with antibiotics that alter the health-associated indigenous intestinal microbiota rapidly induces the supershedder phenotype in infected mice and predisposes uninfected mice to the supershedder phenotype for several days. These results demonstrate that the intestinal microbiota plays a critical role in controlling Salmonella serovar Typhimurium infection, disease, and transmissibility. This novel model should facilitate the study of host, pathogen, and intestinal microbiota factors that contribute to infectious disease transmission.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3