Affiliation:
1. Department of Pharmacology
2. Gene Therapy Center
3. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
Abstract
ABSTRACT
Adeno-associated virus (AAV) is a classification given to a group of nonpathogenic, single-stranded DNA viruses known to reside latently in primates. During latency in humans, AAV type 2 (AAV2) preferentially integrates at a site on chromosome 19q13.3ter by targeting a sequence composed of an AAV Rep binding element (RBE), a spacer, and a nicking site. Here, we report the DNA sequence of an African green monkey AAV integration site isolated from CV-1 cells. Overall, it has 98% homology to the analogous human site, including identical spacer and nicking sequences. However, the simian RBE is expanded, having five perfect directly repeated GAGC tetramers. We carried out a number of in vitro and in vivo assays to determine the effect of this expanded RBE sequence on the Rep-RBE interaction and AAV targeted integration. Using electromobility shift assays it was demonstrated that AAV4 Rep68 bound the expanded RBE with a sixfold-greater affinity than the human RBE. To determine the basis for the affinity increase, DNase I protection and methylation interference (MI) assays were performed. Comparison of footprints on both the human and simian RBEs revealed nearly identical protection; however, MI analysis suggested greater interaction with the guanine nucleotides of the expanded RBE, thus providing a biochemical basis for the increased binding activity. In vivo, integration targeted to the simian RBE was demonstrated by PCR analysis of latently infected Cos-7 cells. Interestingly, the frequency of site-specific integration was twofold greater in Cos-7 cells than in HeLa cells. Overall, these experiments establish that the simian RBE, identified in CV-1 cells, functions analogously to the human RBE and provide further evidence for a developing model that proposes individual roles for the RBE and the spacer and nicking site elements.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献