Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4

Author:

Chee-Sanford J C1,Frost J W1,Fries M R1,Zhou J1,Tiedje J M1

Affiliation:

1. Department of Microbiology, Michigan State University, East Lansing 48824, USA.

Abstract

A toluene-degrading denitrifier, Azoarcus tolulyticus Tol-4, was one of eight similar strains isolated from three petroleum-contaminated aquifer sediments. When the strain was grown anaerobically on toluene, 68% of the carbon from toluene was found as CO2 and 30% was found as biomass. Strain Tol-4 had a doubling time of 4.3 h, a Vmax of 50 micromol x min-1 x g of protein-1, and a cellular yield of 49.6 g x mol of toluene-1. Benzoate appeared to be an intermediate, since F-benzoates accumulated from F-toluenes and [14C]benzoate was produced from [14C]toluene in the presence of excess benzoate. Two metabolites, E-phenylitaconic acid (1 to 2%) and benzylsuccinic acid (<1%), accumulated from anaerobic toluene metabolism. These same products were also produced when cells were grown on hydrocinnamic acid and trans-cinnamic acid but were not produced from benzylalcohol, benzaldehyde, benzoate, p-cresol, or their hydroxylated analogs. The evidence supports an anaerobic toluene degradation pathway involving an initial acetyl coenzyme A (acetyl-CoA) attack in strain Tol-4, as proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for another toluene-degrading denitrifier, strain T1. Our findings support a modification of the proposed pathway in which cinnamoyl-CoA follows the oxidation of hydrocinnamoyl-CoA, analogous to the presumed oxidation of benzylsuccinic acid to form E-phenylitaconic acid. Cinnamic acid was detected in Tol-4 cultures growing in the presence of toluene and [14C]acetate. We further propose a second acetyl-CoA addition to cinnamoyl-CoA as the source of benzylsuccinic acid and E-phenylitaconic acid. This pathway is supported by the finding that monofluoroacetate added to toluene-growing cultures resulted in a significant increase in production of benzylsuccinic acid and E-phenylitaconic acid and by the finding that [14C]benzylsuccinic acid was detected after incubation of cells with toluene, [14C]acetate, and cinnamic acid. Evidence for anaerobic toluene metabolism by methyl group oxidation was not found, since benzylsuccinic acid and E-phenylitaconic acid were not detected after incubation with benzylalcohol and benzaldehyde, nor were benzylalcohol and benzaldehyde detected even in 14C trapping experiments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference42 articles.

1. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate;Altenschmidt U.;Arch. Microbiol.,1991

2. Anaerobic toluene oxidation to benzylalcohol and benzaldehyde in a denitrifying Pseudomonas strain;Altenschmidt U.;J. Bacteriol.,1992

3. Becker W. M. 1983. Aerobic production of ATP: the TCA cycle p. 323-358. In G. Zubay (ed.) Biochemistry. Addison-Wesley Publishing Co. Inc. Reading Mass.

4. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process;Beller H. R.;Appl. Environ. Microbiol.,1992

5. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes;Brock T. D.;Appl. Environ. Microbiol.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3