Affiliation:
1. Institut für Klinische und Molekulare Virologie, Erlangen, Germany.
Abstract
Gene expression of human papillomaviruses (HPV) is tightly controlled by cellular factors and by the virally encoded E2 protein through binding to distinct sites within the regulatory noncoding region. While for the high-risk genital papillomaviruses a single promoter drives the expression of all early genes, a second promoter present in the E6 open reading frame of the low-risk HPV type 6 (HPV6) would allow an independent regulation of E6 and E7 oncogene expression. In this report, we provide the first evidence that E2 regulates both early promoters of HPV6 separately and we show that promoter usage as well as E2 regulation is cell type dependent. Among the different epithelial cell lines tested, only RTS3b cells allowed an expression pattern similar to that observed in naturally infected benign condylomas. While the E6 promoter was repressed by E2 to 50% of its basal activity, the E7 promoter was simultaneously stimulated up to fivefold. Activation of the E7 promoter was mediated predominantly by the binding of E2 to the most promoter-distal E2 binding site. Repression of the E6 promoter depended on the presence of two intact promoter-proximal binding sites. Mutation of both of these repressor binding sites reversed the effect of E2 on the E6 promoter from repression to activation. In contrast, in HT3 cells we observed an E2-mediated activation of the E6 promoter in the context of the wild-type noncoding region. This indicated that repression of the E6 promoter by binding of E2 to both promoter-proximal binding sites did not function in the cellular environment provided by HT3 cells. These data suggest that the separate regulation of the E6 and E7 promoters of HPV6 is mediated through successive occupation of binding sites with different affinities for E2 depending on the intracellular concentration of E2 and on the cellular environment provided by the infected cell.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献