Affiliation:
1. Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Abstract
The switch from latency to viral replication in Epstein-Barr virus (EBV)-transformed human B cells is mediated by Zta, the protein product of immediate-early EBV gene BZLF1. BZLF1 transcription is normally suppressed in EBV-transformed B cells but can be induced in some cell lines upon ligation of surface immunoglobulin by mechanisms that include the activation of Ca(2+)-dependent signaling pathways. The multifunctional Ca2+/calmodulin-dependent kinase type IV/Gr (CaMKIV/Gr) is normally absent in primary human B cells, but its expression is induced by the EBV oncoprotein LMP1 in the course of B-cell growth transformation by EBV. In this study, we demonstrate that activated CaMKIV/Gr induces transcription from the BZLF1 promoter and upregulates the expression of Zta in permissive cells. Transcriptional activation of the BZLF1 promoter by CaMKIV/Gr is dependent on the CREB/AP1 binding element ZII and is greatly augmented by the Ca2+/calmodulin-dependent phosphatase calcineurin. These results outline a virus-regulated mechanism involving CaMKIV/Gr which promotes transition from latency to productive viral replication in response to Ca(2+)-mobilizing extracellular signals.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献