Characterization of the genome of feline foamy virus and its proteins shows distinct features different from those of primate spumaviruses

Author:

Winkler I1,Bodem J1,Haas L1,Zemba M1,Delius H1,Flower R1,Flügel R M1,Löchelt M1

Affiliation:

1. Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Abstract

The genome of the feline foamy virus (FeFV) isolate FUV was characterized by molecular cloning and nucleotide sequence analysis of subgenomic proviral DNA. The overall genetic organization of FeFV and protein sequence comparisons of different FeFV genes with their counterparts from other known foamy viruses confirm that FeFV is a complex foamy virus. However, significant differences exist when FeFV is compared with primate foamy viruses. The FeFV Gag protein is smaller than that of the primate spumaviruses, mainly due to additional MA/CA sequences characteristic of the primate viruses only. Gag protein sequence motifs of the NC domain of primate foamy viruses assumed to be involved in genome encapsidation are not conserved in FeFV. FeFV Gag and Pol proteins were detected with monospecific antisera directed against Gag and Pol domains of the human foamy virus and with antisera from naturally infected cats. Proteolytic processing of the FeFV Gag precursor was incomplete, whereas more efficient proteolytic cleavage of the pre125Pro-Pol protein was observed. The active center of the FeFV protease contains a Gln that replaces an invariant Gly residue at this position in other retroviral proteases. Functional studies on FeFV gene expression directed by the promoter of the long terminal repeat showed that FeFV gene expression was strongly activated by the Bell/Tas transactivator protein. The FeFV Bell/Tas transactivator is about one-third smaller than its counterpart of primate spumaviruses. This difference is also reflected by a limited sequence similarity and only a moderate conservation of structural motifs of the different foamy virus transactivators analyzed.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference70 articles.

1. Regulation of expression and pathogenic potential of human foamy virus in vitro and in transgenic mice;Aguzzi A.;Curr. Top. Microbiol. Immunol.,1996

2. Bacterial expression of the capsid antigen domain and identification of native Gag proteins in spumavirus-infected cells;Bartholomä A.;Virus Res.,1992

3. Functional analysis of human foamy virus accessory reading frames;Baunach G.;J. Virol.,1993

4. Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses;Bodem J.;J. Virol.,1996

5. Characterization of the internal promoter of simian foamy viruses;Campbell M.;J. Virol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3