Ribose 2′-O Methylation of the Vesicular Stomatitis Virus mRNA Cap Precedes and Facilitates Subsequent Guanine-N-7 Methylation by the Large Polymerase Protein

Author:

Rahmeh Amal A.1,Li Jianrong1,Kranzusch Philip J.1,Whelan Sean P. J.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115

Abstract

ABSTRACT During conventional mRNA cap formation, two separate methyltransferases sequentially modify the cap structure, first at the guanine-N-7 (G-N-7) position and subsequently at the ribose 2′-O position. For vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses, the two methylase activities share a binding site for the methyl donor S -adenosyl- l -methionine and are inhibited by individual amino acid substitutions within the C-terminal domain of the large (L) polymerase protein. This led to the suggestion that a single methylase domain functions for both 2′-O and G-N-7 methylations. Here we report a trans -methylation assay that recapitulates both ribose 2′-O and G-N-7 modifications by using purified recombinant L and in vitro-synthesized RNA. Using this assay, we demonstrate that VSV L typically modifies the 2′-O position of the cap prior to the G-N-7 position and that G-N-7 methylation is diminished by pre-2′-O methylation of the substrate RNA. Amino acid substitutions in the C terminus of L that prevent all cap methylation in recombinant VSV (rVSV) partially retain the ability to G-N-7 methylate a pre-2′-O-methylated RNA, therefore uncoupling the effect of substitutions in the C terminus of the L protein on the two methylations. In addition, we show that the 2′-O and G-N-7 methylase activities act specifically on RNA substrates that contain the conserved elements of a VSV mRNA start at the 5′ terminus. This study provides new mechanistic insights into the mRNA cap methylase activities of VSV L, demonstrates that 2′-O methylation precedes and facilitates subsequent G-N-7 methylation, and reveals an RNA sequence and length requirement for the two methylase activities. We propose a model of regulation of the activity of the C terminus of L protein in 2′-O and G-N-7 methylation of the cap structure.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3