Affiliation:
1. Department of Virology, University of Heidelberg, INF 324, 69120 Heidelberg, Germany
2. Heinrich-Pette-Institute, 20251 Hamburg, Germany
Abstract
ABSTRACT
Nef, an important pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), elevates virus replication in vivo. Among other activities, Nef affects T-cell receptor (TCR) signaling via several mechanisms. For HIV-1 Nef these include alteration of the organization and function of the immunological synapse (IS) such as relocalization of the Lck kinase, as well as early inhibition of TCR/CD3 complex (TCR-CD3)-mediated actin rearrangements and tyrosine phosphorylation. Although most SIV and HIV-2 Nef alleles (group 2) potently downregulate cell surface TCR-CD3, this activity was lost in the viral lineage that gave rise to HIV-1 and its SIV counterparts (group 1). To address the contribution of TCR-CD3 downregulation to Nef effects on TCR signal initiation, we compared the activities of 18 group 1 and group 2 Nef proteins, as well as SIV Nef mutants with defects in TCR-CD3 downmodulation. We found that alteration of Lck's subcellular localization is largely conserved and occurs independently of actin remodeling inhibition or TCR-CD3 downregulation. Surprisingly, Nef proteins of both groups also strongly reduced TCR-induced actin remodeling and tyrosine phosphorylation on TCR-stimulatory surfaces and TCR-CD3 downmodulation competence by group 2 Nef proteins only slightly elevated these effects. Furthermore, Nef proteins from HIV-1 and SIV reduced conjugation between infected primary human T lymphocytes and Raji B cells and potently prevented F-actin polarization at the IS independently of their ability to downmodulate TCR-CD3. These results establish alterations of early TCR signaling events at the IS, including F-actin remodeling and relocalization of Lck, as evolutionary conserved activities of highly divergent lentiviral Nef proteins.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献