Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions

Author:

Harrison Jesse P.1ORCID,Hallsworth John E.2,Cockell Charles S.1

Affiliation:

1. UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom

2. Institute for Global Food Security, School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom

Abstract

ABSTRACT The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and the composition of the gaseous phase (aerobic versus microaerobic) determine the susceptibility of a marine bacterium, Halomonas hydrothermalis , to suboptimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5% [vol/vol] O 2 , 10% [vol/vol] CO 2 , reduced pH) reduced sensitivity to temperature across the 13°C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth's biosphere.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3