Mutations in Genes Encoding Penicillin-Binding Proteins and Efflux Pumps Play a Role in β-Lactam Resistance in Helicobacter cinaedi

Author:

Rimbara Emiko1ORCID,Mori Shigetarou1,Kim Hyun1,Suzuki Masato2,Shibayama Keigo1

Affiliation:

1. Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan

2. Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan

Abstract

ABSTRACT β-Lactams are often used to treat Helicobacter cinaedi infections; however, the mechanism underlying β-lactam resistance is unknown. In this study, we investigated β-lactam resistance in an H. cinaedi strain, MRY12-0051 (MICs of amoxicillin [AMX] and ceftriaxone [CRO], 32 and 128 μg/ml; obtained from human feces). Based on a comparative whole-genome analysis of MRY12-0051 and the CRO-susceptible H. cinaedi strain MRY08-1234 (MICs of AMX and CRO, 1 and 4 μg/ml; obtained from human blood), we identified five mutations in genes encoding penicillin-binding proteins (PBPs), including two in pbpA , one in pbp2 , and two in ftsI . Transformation and penicillin binding assays indicated that CRO resistance was mainly associated with mutations in pbpA ; mutations in ftsI also led to increased resistance to AMX. Knocking out cmeB and cmeD , which encode resistance-nodulation-division-type efflux pump components, in H. cinaedi type strain CCUG18818 (AMX MIC, 4 to 8 μg/ml) resulted in 8- and 64-fold decreases, respectively, in the AMX MIC. Hence, MICs of AMX in H. cinaedi become similar to those of Helicobacter pylori isolates in the absence of cmeD . In conclusion, the difference in susceptibility to β-lactams between H. pylori and H. cinaedi is explained by differences in efflux pump components. Mutations in pbpA are the primary determinant of high resistance to β-lactams in H. cinaedi .

Funder

Ministry of Health, Labour and Welfare

Japan Agency for Medical Research and Development

MEXT | Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3