Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori

Author:

Phadnis S H1,Ilver D1,Janzon L1,Normark S1,Westblom T U1

Affiliation:

1. Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110.

Abstract

Some strains of Helicobacter pylori are known to produce an extracellular cytotoxin that causes vacuolization in various mammalian cells. In this study, we found that concentrated culture supernatants from four Helicobacter strains isolated from patients infected with the bacterium, but having normal gastric mucosa, lacked cytotoxic activity. We also show that a higher percentage of strains isolated from patients with polymorphonuclear leukocyte infiltration of gastric mucosa are toxin positive (78%) versus those isolated from patients lacking such infiltration (33%). In addition to examining the relationship between pathology and cytotoxic activity, we used the previously published N-terminal sequence of the protein to clone and characterize vacA, the structural gene encoding the cytotoxin. Briefly, three oligonucleotides capable of encoding the first nine amino acids corresponding to the sense strand and four oligonucleotides corresponding to the noncoding strand of the last seven known amino acids of the cytotoxin protein were made. They were used in all 12 possible combinations in 12 different PCR reactions, with DNA from a cytotoxin-positive strain as template. In four combinations, the expected 69-bp fragment was seen. The sequence of this 69-bp fragment confirmed that it encoded the known N-terminal sequence of the cytotoxin. This gene is capable of encoding a 136-kDa protein with a 33-amino-acid signal peptide, whereas the purified cytotoxin is only 87 kDa, suggesting processing in the C-terminal region of the protein. A single copy of the vacA gene encodes the cytotoxin in H. pylori. Consequently, the insertion of a kanamycin resistance marker in the vacA gene produced an isogenic mutant lacking the cytotoxic activity. This mutant provides genetic evidence that vacA encodes the cytotoxin. Sequence analysis of the DNA adjacent to the vacA gene demonstrated that this gene is next to a putative cysteinyl tRNA synthetase gene. From the sequence arrangement, we predict that there are no other genes transcribed together with vacA. We also show that five of seven cytotoxin-negative strains examined still carry the sequences encoding it whereas the other two have suffered a deletion of the vacA gene. We further show that in at least one cytotoxin-negative but vacA-positive strain (MO19), there are variations in the length of the vacA gene that could explain the cytotoxin-negative phenotype in this strain.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3