Evaluation of the Qvella FAST System and the FAST-PBC cartridge for rapid species identification and antimicrobial resistance testing directly from positive blood cultures

Author:

Sy Issa1ORCID,Bühler Nina1,Becker Sören L.123,Jung Philipp1

Affiliation:

1. Institute of Medical Microbiology and Hygiene, Saarland University , Homburg, Germany

2. Swiss Tropical and Public Health Institute , Allschwil, Switzerland

3. University of Basel , Basel, Switzerland

Abstract

ABSTRACT Blood culture diagnostics require rapid and accurate identification (ID) of pathogens and antimicrobial susceptibility testing (AST). Standard procedures, involving conventional cultivation on agar plates, may take up to 48 hours or more until AST completion. Recent approaches aim to shorten the processing time of positive blood cultures (PBC). The FAST System is a new technology, capable of purifying and concentrating bacterial/fungal pathogens from positive blood culture media and producing a bacterial suspension called “liquid colony” (LC), which can be further used in downstream analyses (e.g., ID and AST). Here, we evaluated the performance of the FAST System LC generated from PBC in comparison to our routine workflow including ID by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using Sepsityper, AST by automatized MicroScan WalkAway plus and directly inoculated disk diffusion (DD), and MICRONAUT-AM for yeast/fungi. A total of 261 samples were analyzed, of which 86.6% (226/261) were eligible for the comparative ID and AST analyses. In comparison to the reference technique (culture-grown colonies), ID concordance of the FAST System LC and Sepsityper was 150/154 (97.4%) and 123/154 (79.9%), respectively, for Gram positive; 67/70 (95.7%) and 64/70 (91.4%), respectively, for Gram negative. For AST, categorical agreement (CA) of the FAST System LC in comparison to the routine workflow for Gram-positive bacteria was 96.1% and 98.7% for MicroScan and DD, respectively. Similar results were obtained for Gram-negative bacteria with 96.6% and 97.5% of CA for MicroScan and DD, respectively. Taken together, the FAST System LC allowed the laboratory to significantly reduce the time to obtain correct ID and AST (automated MicroScan) results 1 day earlier and represents a promising tool to expedite the processing of PBC.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3