Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time.

Author:

Carlson G A,Goodman P A,Lovett M,Taylor B A,Marshall S T,Peterson-Torchia M,Westaway D,Prusiner S B

Abstract

The mouse prion protein (PrP) gene (Prn-p), which encodes the only macromolecule that has been identified in scrapie prions, is tightly linked or identical to a gene (Prn-i) that controls the duration of the scrapie incubation period in mice. Constellations of restriction fragment length polymorphisms distinguish haplotypes a to f of Prn-p. The Prn-pb allele encodes a PrP that differs in sequence from those encoded by the other haplotypes and, in inbred mouse strains, correlates with long scrapie incubation time (Westaway et al., Cell 51: 651-662, 1987). In segregating crosses of mice, we identified rare individuals with a divergent scrapie incubation time phenotype and Prn-p genotype, but progeny testing to demonstrate meiotic recombination was not possible because scrapie is a lethal disease. Crosses involving the a, d, and e haplotypes demonstrated that genes unlinked to Prn-p could modulate scrapie incubation time and that there were only two alleles of Prn-i among the mouse strains tested. All inbred strains of mice that had the Prnb haplotype were probably direct descendants of the I/LnJ progenitors. We established the linkage relationship between the prion gene complex (Prn) and other chromosome 2 genes; the gene order, proximal to distal, is B2m-II-1a-Prn-Itp-A. Recombination suppression in the B2m-Prn-p interval occurred during the crosses involved in transferring the I/LnJ Prnb complex into a C57BL/6J background. Transmission ratio distortion by Prna/Prnb heterozygous males was also observed in the same crosses. These phenomena, together with the founder effect, would favor apparent linkage disequilibrium between Prn-p and Prn-i. Therefore, transmission genetics may underestimate the number of genes in Prn.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3