ScaC, an Adaptor Protein Carrying a Novel Cohesin That Expands the Dockerin-Binding Repertoire of the Ruminococcus flavefaciens 17 Cellulosome

Author:

Rincón Marco T.1,Martin Jennifer C.1,Aurilia Vincenzo2,McCrae Sheila I.1,Rucklidge Garry J.3,Reid Martin D.3,Bayer Edward A.4,Lamed Raphael5,Flint Harry J.1

Affiliation:

1. Microbial Genetics Group

2. Institute of Protein Biochemistry, National Research Council, Naples, Italy

3. Proteomics Unit, Rowett Research Institute, Aberdeen, United Kingdom

4. Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot

5. Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel

Abstract

ABSTRACT A new gene, designated scaC and encoding a protein carrying a single cohesin, was identified in the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 as part of a gene cluster that also codes for the cellulosome structural components ScaA and ScaB. Phylogenetic analysis showed that the sequence of the ScaC cohesin is distinct from the sequences of other cohesins, including the sequences of R. flavefaciens ScaA and ScaB. The scaC gene product also includes at its C terminus a dockerin module that closely resembles those found in R. flavefaciens enzymes that bind to the cohesins of the primary ScaA scaffoldin. The putative cohesin domain and the C-terminal dockerin module were cloned and overexpressed in Escherichia coli as His 6 -tagged products (ScaC-Coh and ScaC-Doc, respectively). Affinity probing of protein extracts of R. flavefaciens 17 separated in one-dimensional and two-dimensional gels with recombinant cohesins from ScaC and ScaA revealed that two distinct subsets of native proteins interact with ScaC-Coh and ScaA-Coh. Furthermore, ScaC-Coh failed to interact with the recombinant dockerin module from the enzyme EndB that is recognized by ScaA cohesins. On the other hand, ScaC-Doc was shown to interact specifically with the recombinant cohesin domain from ScaA, and the ScaA-Coh probe was shown to interact with a native 29-kDa protein spot identified as ScaC by matrix-assisted laser desorption ionization—time of flight mass spectrometry. These results suggest that ScaC plays the role of an adaptor scaffoldin that is bound to ScaA via the ScaC dockerin module, which, via the distinctive ScaC cohesin, expands the range of proteins that can bind to the ScaA-based enzyme complex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3