Abstract
Mutants of Bacillus subtilis strain 168 have been isolated that are at least 90 to 95% deficient in the autolytic enzymes N-acetylmuramyl-L-alanine amidase and endo-beta-N-acetylglucosaminidase. These mutants grow at normal rates as very long chains of unseparated cells. The length of the chains is directly related to the growth rates. They are nonmotile and have no flagella, but otherwise appear to have normal cell morphology. Their walls are fully sysceptible to enzymes formed by the wild type and have the same chemical composition as the latter. Cell wall preparations from the mutants lyse at about 10% of the rate of those from the isogenic wild type, with the correspondingly small liberation of both the amino groups of alanine at pH 8.0 and of reducing groups at pH 5.6. Likewise, Microcococcus luteus walls at pH 5.6 and B. subtilis walls at pH 8 are lysed only very slowly by LiCl extracts made from the mutants as compared with rates obtained with wild-type extracts. Thus, the activity of both autolytic enzymes in the mutants is depressed. The frequencies of transformation, the isolation of revertants, and observations with a temperature-sensitive mutant all point to the likelihood that the pleiotropic, phenotypic properties of the strains are due to a single mutation. The mutants did not produce more protease or amylase than did the wild type. They sporulate and the spores germinate normally. The addition of antibiotics to exponentially growing cultures prevents wall synthesis but leads to less lysis than is obtained with the wild type. The bacteriophage PBSX can be induced in the mutants by treatment with mitomycin C.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
196 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献