Effect of Growth Rate and Glucose Concentration on the Biochemical Properties of Streptococcus mutans Ingbritt in Continuous Culture

Author:

Hamilton I. R.1,Phipps P. J.1,Ellwood D. C.1

Affiliation:

1. Microbiological Research Establishment, Porton Down, Salisbury, England

Abstract

A comparison was made of the properties of Streptococcus mutans Ingbritt grown in continuous culture under conditions of excess glucose (nitrogen limitation) and limiting glucose at mean generation times of 1.7 to 14 h. Only low levels of glucoamylase-specific glycogen were formed in cells from either culture, and the total carbohydrate content of the cells under excess glucose was only at most 1.6-fold higher than in the glucose-limited culture. A negligible amount of cell-free polysaccharide was formed in either culture, although a significant level of glucosyltransferase activity was observed in both, with the highest activity at D = 0.2 and 0.4 h -1 with a glucose limitation. Other differences were observed. (i) Lactate was the main end product of the glucose-excess culture, whereas acetate, formate, and ethanol were the main products of the glucose-limited culture except at a mean generation time of 1.5, when lactate represented 30% of the products. (ii) The yield (in grams per mole of glucose) of the latter culture was 2.6- to 4.0- fold higher than the yield of the glucose-excess culture. (iii) Washed cells from the glucose-limited culture were much more acidogenic (1.7- to 6.2-fold) than the glucose-excess cells when incubated with glucose, sucrose, and fructose. Endogenous glycolytic activity by the latter cells was significant, being 31 to 92% of the exogenous glucose rate at the four dilution rates. (iv) Cells from the glucose-excess culture were more insensitive to fluoride than cells from the glucose-limited culture. The NaF 50% inhibition dose values for the effect of fluoride on the metabolism of glucose, sucrose, and fructose were calculated for the four dilution rates at four pH values. This analysis indicated that rapidly metabolizing cells were more sensitive to fluoride than cells that metabolized the sugars more slowly.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3