The phtC-phtD Locus Equips Legionella pneumophila for Thymidine Salvage and Replication in Macrophages

Author:

Fonseca Maris V.1,Sauer John-Demian1,Crepin Sebastien1,Byrne Brenda1,Swanson Michele S.1

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT The phagosomal transporter (Pht) family of the major facilitator superfamily (MFS) is encoded by phylogenetically related intracellular gammaproteobacteria, including the opportunistic pathogen Legionella pneumophila . The location of the pht genes between the putative thymidine kinase ( tdk ) and phosphopentomutase ( deoB ) genes suggested that the phtC and phtD loci contribute to thymidine salvage in L. pneumophila . Indeed, a phtC + allele in trans restored pyrimidine uptake to an Escherichia coli mutant that lacked all known nucleoside transporters, whereas a phtD + allele did not. The results of phenotypic analyses of L. pneumophila strains lacking phtC or phtD strongly indicate that L. pneumophila requires PhtC and PhtD function under conditions where sustained dTMP synthesis is compromised. First, in broth cultures that mimicked thymidine limitation or starvation, L. pneumophila exhibited a marked requirement for PhtC function. Conversely, mutation of phtD conferred a survival advantage. Second, in medium that lacked thymidine, multicopy phtC + or phtD + alleles enhanced the survival of L. pneumophila thymidylate synthase ( thyA )-deficient strains, which cannot synthesize dTMP endogenously. Third, under conditions in which transport of the pyrimidine nucleoside analog 5-fluorodeoxyuridine (FUdR) would inhibit growth, PhtC and PhtD conferred a growth advantage to L. pneumophila thyA + strains. Finally, when cultured in macrophages, L. pneumophila required the phtC-phtD locus to replicate. Accordingly, we propose that PhtC and PhtD contribute to protect L. pneumophila from dTMP starvation during its intracellular life cycle.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3