Affiliation:
1. Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032
Abstract
ABSTRACT
HBsu, the
Bacillus subtilis
homolog of the
Escherichia coli
HU proteins and the major chromosomal protein in vegetative cells of
B. subtilis
, is present at similar levels in vegetative cells and spores (∼5 × 10
4
monomers/genome). The level of HBsu in spores was unaffected by the presence or absence of the α/β-type, small acid-soluble proteins (SASP), which are the major chromosomal proteins in spores. In developing forespores, HBsu colocalized with α/β-type SASP on the nucleoid, suggesting that HBsu could modulate α/β-type SASP-mediated properties of spore DNA. Indeed, in vitro studies showed that HBsu altered α/β-type SASP protection of pUC19 from DNase digestion, induced negative DNA supercoiling opposing α/β-type SASP-mediated positive supercoiling, and greatly ameliorated the α/β-type SASP-mediated increase in DNA persistence length. However, HBsu did not significantly interfere with the α/β-type SASP-mediated changes in the UV photochemistry of DNA that explain the heightened resistance of spores to UV radiation. These data strongly support a role for HBsu in modulating the effects of α/β-type SASP on the properties of DNA in the developing and dormant spore.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献