A Conserved α-Helix Essential for a Type VI Secretion-Like System of Francisella tularensis

Author:

Bröms Jeanette E.1,Lavander Moa1,Sjöstedt Anders1

Affiliation:

1. Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 85 Umeå, Sweden

Abstract

ABSTRACT Francisella tularensis harbors genes with similarity to genes encoding components of a type VI secretion system (T6SS) recently identified in several gram-negative bacteria. These genes include iglA and iglB encoding IglA and IglB, homologues of which are conserved in most T6SSs. We used a yeast two-hybrid system to study the interaction of the Igl proteins of F. tularensis LVS. We identified a region of IglA, encompassing residues 33 to 132, necessary for efficient binding to IglB, as well as for IglAB protein stability and intramacrophage growth. In particular, residues 103 to 122, overlapping a highly conserved α-helix, played an absolutely essential role. Point mutations within this domain caused modest defects in IglA-IglB binding in the yeast Saccharomyces cerevisiae but markedly impaired intramacrophage replication and phagosomal escape, resulting in severe attenuation of LVS in mice. Thus, IglA-IglB complex formation is clearly crucial for Francisella pathogenicity. This interaction may be universal to type VI secretion, since IglAB homologues of Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella enterica serovar Typhimurium, and Escherichia coli were also shown to interact in yeast, and the interaction was dependent on preservation of the same α-helix. Heterologous interactions between nonnative IglAB proteins further supported the notion of a conserved binding site. Thus, IglA-IglB complex formation is clearly crucial for Francisella pathogenicity, and the same interaction is conserved in other human pathogens.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3