Altering the Structure of Carbohydrate Storage Granules in the Cyanobacterium Synechocystis sp. Strain PCC 6803 through Branching-Enzyme Truncations

Author:

Welkie David G.1,Lee Byung-Hoo2,Sherman Louis A.1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA

2. Department of Food Science & Biotechnology, College of BioNano Technology, Gachon University, Seongnam, Republic of Korea

Abstract

ABSTRACT Carbohydrate storage is an important element of metabolism in cyanobacteria and in the chloroplasts of plants. Understanding how to manipulate the metabolism and storage of carbohydrate is also an important factor toward harnessing cyanobacteria for energy production. While most cyanobacteria produce glycogen, some have been found to accumulate polysaccharides in the form of water-insoluble α-glucan similar to amylopectin. Notably, this alternative form, termed “semi-amylopectin,” forms in cyanobacterial species harboring three branching-enzyme (BE) homologs, designated BE1, BE2, and BE3. In this study, mutagenesis of the branching genes found in Synechocystis sp. strain PCC 6803 was performed in order to characterize their possible impact on polysaccharide storage granule morphology. N-terminal truncations were made to the native BE gene of Synechocystis sp. PCC 6803. In addition, one of the two native debranching enzyme genes was replaced with a heterologous debranching enzyme gene from a semi-amylopectin-forming strain. Growth and glycogen content of mutant strains did not significantly differ from those of the wild type, and ultrastructure analysis revealed only slight changes to granule morphology. However, analysis of chain length distribution by anion-exchange chromatography revealed modest changes to the branched-chain length profile. The resulting glycogen shared structure characteristics similar to that of granules isolated from semi-amylopectin-producing strains. IMPORTANCE This study is the first to investigate the impact of branching-enzyme truncations on the structure of storage carbohydrates in cyanobacteria. The results of this study are an important contribution toward understanding the relationship between the enzymatic repertoire of a cyanobacterial species and the morphology of its storage carbohydrates.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3