Characterization of a fixLJ-regulated Bradyrhizobium japonicum gene sharing similarity with the Escherichia coli fnr and Rhizobium meliloti fixK genes

Author:

Anthamatten D1,Scherb B1,Hennecke H1

Affiliation:

1. Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.

Abstract

We describe the cloning, sequencing, regulation, and mutational analysis of a Bradyrhizobium japonicum fixK-like gene whose product belongs to the family of Fnr-Crp-related regulatory proteins. The predicted 237-amino-acid FixK protein was found to share between 28 and 38% sequence identity with the Escherichia coli Fnr protein, other bacterial Fnr-like proteins (FnrN, Anr, and HlyX), and two rhizobial FixK proteins. The B. japonicum fixK-like gene, when expressed from a lac promoter, could functionally complement an fnr mutant strain of E. coli and activate transcription from an fnr-dependent promoter in the E. coli background; this activation was sixfold higher in anaerobic cultures than in aerobically grown cells, a finding that suggested oxygen sensitivity of the FixK protein and was consistent with the presence of a cysteine-rich, putatively oxygen-responsive domain at its N-terminal end. Similar to the situation in Rhizobium meliloti, expression of the fixK gene in B. japonicum was shown to be induced at low O2 tension and this induction was dependent on the two-component regulatory system FixLJ. Despite this dependency, however, a B. japonicum fixK mutant did not have the phenotypic characteristics of B. japonicum fixL and fixJ mutants: the fixK mutant was neither Fix- in symbiosis with soybean plants nor defective in anaerobic respiration with nitrate as the terminal electron acceptor. Also, the fixK mutant was unaffected in the expression of one of the two B. japonicum sigma 54 genes, rpoN1, which was previously shown to be controlled by the fixLJ genes. When fixK was introduced into the B. japonicum fixJ mutant and expressed therein from a constitutive promoter (i.e., uncoupling it from regulation by FixJ), the FixK protein thus synthesized fully restored anaerobic nitrate respiration in that strain. We interpret this to mean that the B. japonicum wild type has two homologs of fixLJ-regulated fixK genes which can functionally substitute for each other.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3