PML, a growth suppressor disrupted in acute promyelocytic leukemia.

Author:

Mu Z M,Chin K V,Liu J H,Lozano G,Chang K S

Abstract

The nonrandom chromosomal translocation t(15;17)(q22;q21) in acute promyelocytic leukemia (APL) juxtaposes the genes for retinoic acid receptor alpha (RAR alpha) and the putative zinc finger transcription factor PML. The breakpoint site encodes fusion protein PML-RAR alpha, which is able to form a heterodimer with PML. It was hypothesized that PML-RAR alpha is a dominant negative inhibitor of PML. Inactivation of PML function in APL may play a critical role in APL pathogenesis. Our results demonstrated that PML, but not PML-RAR alpha, is a growth suppressor. This is supported by the following findings: (i) PML suppressed anchorage-independent growth of APL-derived NB4 cells on soft agar and tumorigenicity in nude mice, (ii) PML suppressed the oncogenic transformation of rat embryo fibroblasts by cooperative oncogenes, and (iii) PML suppressed transformation of NIH 3T3 cells by the activated neu oncogene. Cotransfection of PML with PML-RAR alpha resulted in a significant reduction in PML's transformation suppressor function in vivo, indicating that the fusion protein can be a dominant negative inhibitor of PML function in APL cells. This observation was further supported by the finding that cotransfection of PML and PML-RAR alpha resulted in altered normal cellular localization of PML. Our results also demonstrated that PML, but not PML-RAR alpha, is a promoter-specific transcription suppressor. Therefore, we hypothesized that disruption of the PML gene, a growth or transformation suppressor, by the t(15;17) translocation in APL is one of the critical events in leukemogenesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3