Nonhomologous recombination in human cells.

Author:

Derbyshire M K,Epstein L H,Young C S,Munz P L,Fishel R

Abstract

Nonhomologous recombination (NHR) is a major pathway for the repair of chromosomal double-strand breaks in the DNA of somatic cells. In this study, a comparison was made between the nonhomologous end joining of transfected adenovirus DNA fragments in vivo and the ability of purified human proteins to catalyze nonhomologous end joining in vitro. Adenovirus DNA fragments were shown to be efficiently joined in human cells regardless of the structure of the ends. Sequence analysis of these junctions revealed that the two participating ends frequently lost nucleotides from the 3' strands at the site of the joint. To examine the biochemical basis of the end joining, nuclear extracts were prepared from a wide variety of mammalian cell lines and tested for their ability to join test plasmid substrates. Efficient ligation of the linear substrate DNA was observed, the in vitro products being similar to the in vivo products with respect to the loss of 3' nucleotides at the junction. Substantial purification of the end-joining activity was carried out with the human immature T-cell-line HPB-ALL. The protein preparation was found to join all types of linear DNA substrates containing heterologous ends with closely equivalent efficiencies. The in vitro system for end joining does not appear to contain any of the three known DNA ligases, on the basis of a number of criteria, and has been termed the NHR ligase. The enriched activity resides in a high-molecular-weight recombination complex that appears to include and require the human homologous pairing protein HPP-1 as well as the NHR ligase. Characterization of the product molecules of the NHR ligase reaction suggests that they are linear oligomers of the monomer substrate joined nonrandomly head-to-head and/or tail-to-tail. The joined ends of the products were found to be modified by a 3' exonuclease prior to ligation, and no circular DNA molecules were detected. These types of products are similar to those required for the breakage-fusion-bridge cycle, a major NHR pathway for chromosome double-strand break repair.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3