Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation.

Author:

Whitelaw M L,Gustafsson J A,Poellinger L

Abstract

Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3