Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module.

Author:

Blair W S,Bogerd H P,Madore S J,Cullen B R

Abstract

The potent C-terminal activation domain of the RelA (p65) subunit of the cellular transcription factor NF-kappa B is shown to contain several discrete acidic activation modules. These short, approximately 11-amino-acid modules were able to give rise to only a low level of transcription activation when fused to the GAL4 DNA-binding domain as monomers. However, dimers and higher-order multimers activated the transcription of minimal promoter elements as effectively as the full-length RelA or VP16 activation domain. Therefore, this 11-amino-acid RelA-derived acidic module appears to contain all of the sequence information required to fully activate a target promoter element as long as it is presented in a form that permits functional synergy. Critical primary sequence requirements for acidic activation module function included a core phenylalanine residue and flanking bulky hydrophobic residues. Overall negative charge was necessary but not sufficient for function. While dimeric forms of the 11-amino-acid acidic activation module bound to either TFIIB or TATA-binding protein efficiently in vitro, a similarly charged peptide lacking the core phenylalanine residue failed to interact. Overall, these data demonstrate that the biological activity of the RelA activation domain is dependent on acidic activator sequences that are closely comparable to those detected in the activation domain of the viral VP16 regulatory protein. We hypothesize that the ability of these acidic activators to specifically interact with multiple components of the transcription initiation complex likely underlies the dramatic functional synergy exhibited by this class of activation domains in vivo.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3