Affiliation:
1. Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999,USA.
Abstract
Coxiella burnetii and Chlamydia trachomatis are bacterial obligate intracellular parasites that occupy distinct vacuolar niches within eucaryotic host cells. We have employed immunofluorescence, cytochemistry, fluorescent vital stains, and fluid-phase markers in conjunction with electron, confocal, and conventional microscopy to characterize the vacuolar environments of these pathogens. The acidic nature of the C. burnetii-containing vacuole was confirmed by its acquisition of the acidotropic base acridine orange (AO). The presence of the vacuolar-type (H+) ATPase (V-ATPase) within the Coxiella vacuolar membrane was demonstrated by indirect immunofluorescence, and growth of C. burnetii was inhibited by bafilomycin A1 (Baf A), a specific inhibitor of the V-ATPase. In contrast, AO did not accumulate in C. trachomatis inclusions nor was the V-ATPase found in the inclusion membrane. Moreover, chlamydial growth was not inhibited by Baf A or the lysosomotropic amines methylamine, ammonium chloride, and chloroquine. Vacuoles harboring C. burnetii incorporated the fluorescent fluid- phase markers, fluorescein isothiocyanate-dextran (FITC-dex) and Lucifer yellow (LY), indicating trafficking between that vacuole and the endocytic pathway. Neither FITC-dex nor LY was sequestered by chlamydial inclusions. The late endosomal-prelysosomal marker cation-independent mannose 6-phosphate receptor was not detectable in the vacuolar membranes encompassing either parasite. However, the lysosomal enzymes acid phosphatase and cathepsin D and the lysosomal glycoproteins LAMP-1 and LAMP-2 localized to the C. burnetii vacuole but not the chlamydial vacuole. Interaction of C. trachomatis inclusions with the Golgi-derived vesicles was demonstrated by the transport of sphingomyelin, endogenously synthesized from C6-NBD-ceramide, to the chlamydial inclusion and incorporation into the bacterial cell wall. Similar trafficking of C-NBD-ceramide was not evident in C. burnetii-infected cells. Collectively, the data indicate that C. trachomatis replicates within a nonacidified vacuole that is disconnected from endosome-lysosome trafficking but may receive lipid from exocytic vesicles derived from the trans-Golgi network. These observations are in sharp contrast to those for C. burnetii, which by all criteria resides in a typical phagolysosome.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
359 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献