Iron Requirements and Aluminum Sensitivity of an Hydroxamic Acid-Requiring Strain of Bacillus megaterium

Author:

Davis W. B.1,McCauley M. J.1,Byers B. R.1

Affiliation:

1. Department of Microbiology, University of Mississippi School of Medicine, Jackson, Mississippi 39216

Abstract

Bacillus megaterium strain ATCC 19213 secretes a ferric-chelating secondary hydroxamic acid, whereas a mutant (strain SK11) derived from it cannot produce a hydroxamate. Strain SK11 could be cultivated in a sucrose-mineral salts medium (treated with Chelex 100 to reduce trace metals) in the absence of added hydroxamate, if the inoculum was high. The lowest iron supplements necessary for maximal growth of both strains were equivalent (0.01 to 0.04 μg of iron per ml). Addition of either aluminum (0.5 μg/ml) or chromium (0.1 μg/ml) to the medium prevented full growth of strain SK11 at the minimal iron concentration, although elevated iron (1 μg/ml) reversed this inhibition. The iron-free secondary hydroxamate, Desferal, also abolished aluminum and chromium inhibition of strain SK11, producing maximal population densities at the low iron concentration. Growth of the hydroxamate-producing strain 19213 was not altered significantly by the aluminum or chromium levels which inhibited strain SK11. However, strain 19213 responded to these metals by increasing its secretion of a secondary hydroxamate. It was concluded that aluminum and chromium interfered with iron incorporation, either directly or by formation of nonutilizable aggregates with iron. The secondary hydroxamates may have overcome this interference by solubilization of iron for delivery to a single uptake process, or the ferric-hydroxamate chelate may enter the cell by an alternate route.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3