Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12S E1A product.

Author:

Simon M C,Kitchener K,Kao H T,Hickey E,Weber L,Voellmy R,Heintz N,Nevins J R

Abstract

We have previously shown that the human 70-kilodalton heat shock protein gene (hsp70) is induced by the adenovirus E1A gene product and during the S-G2 phase of the cell cycle. In this study, we investigated the effect of E1A on the expression of other human hsp genes. A gene encoding one form of the hsp89 protein (hsp89 alpha) was activated during an adenovirus infection with kinetics similar to those of activation of hsp70. The induction required a functional E1A gene. However, the hsp89 transcript was not cell cycle regulated. Genes encoding another form of hsp89 and the hsp27 protein were not induced by E1A or during the cell cycle. Further examination of hsp70 expression revealed a greater complexity than previously seen. S1 nuclease analysis using an hsp70 cDNA as well as a distinct hsp70 genomic clone demonstrated three related hsp70 transcripts; two were induced by E1A, and one was not. Both of the E1A-inducible genes were regulated during the cell cycle. All three were induced by heat shock. These results suggest common aspects of control among certain members of this family of cellular genes distinct from heat shock control. Finally, using viruses that express the individual E1A proteins, we found that the hsp70 gene is induced by the 12S and the 13S E1A products. The efficiency of induction by the 12S product was somewhat less than that by the 13S product but only by a factor of less than 2. This is in contrast to the induction of early viral genes, for which the 13S product is considerably more efficient than the 12S product.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3