Previously Unrecognized Vaccine Candidates Control Trypanosoma cruzi Infection and Immunopathology in Mice

Author:

Bhatia Vandanajay123,Garg Nisha Jain123

Affiliation:

1. Departments of Microbiology and Immunology

2. Pathology, University of Texas Medical Branch, Galveston, Texas

3. Center for Biodefense and Emerging Infectious Diseases and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas

Abstract

ABSTRACT Trypanosoma cruzi is the etiologic agent of Chagas' disease, a major health problem in Latin America and an emerging infectious disease in the United States. Previously, we screened a T. cruzi sequence database by a computational-bioinformatic approach and identified antigens that exhibited the characteristics of good vaccine candidates. In this study, we tested the vaccine efficacy of three of the putative candidate antigens against T. cruzi infection and disease in a mouse model. C57BL/6 mice vaccinated with T. cruzi G1 (Tc G1 )-, Tc G2 -, or Tc G4 -encoding plasmids and cytokine (interleukin-12 and granulocyte-macrophage colony-stimulating factor) expression plasmids elicited a strong Th1-type antibody response dominated by immunoglobulin G2b (IgG2b)/IgG1 isotypes. The dominant IgG2b/IgG1 antibody response was maintained after a challenge infection and was associated with 50 to 90% control of the acute-phase tissue parasite burden and an almost undetectable level of tissue parasites during the chronic phase, as determined by a sensitive T. cruzi 18S rRNA gene-specific real-time PCR approach. Splenocytes from vaccinated-and-infected mice, compared to unvaccinated-and-infected mice, exhibited decreased (∼50% lower) proliferation and gamma interferon (IFN-γ) production when stimulated in vitro with T. cruzi antigens, thus suggesting that protection from challenge infection was not provided by an active T-cell response. Subsequently, the serum and cardiac levels of IFN-γ and tumor necrosis factor alpha and infiltration of inflammatory infiltrate in the heart were decreased in vaccinated mice during the course of infection and chronic disease development. Taken together, these results demonstrate the identification of novel vaccine candidates that provided protection from T. cruzi -induced immunopathology in experimental mice.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3