Regulatable Arabinose-Inducible Gene Expression System with Consistent Control in All Cells of a Culture

Author:

Khlebnikov Artem1,Risa Øystein1,Skaug Tove1,Carrier Trent A.1,Keasling J. D.1

Affiliation:

1. Department of Chemical Engineering, University of California, Berkeley, California 94720-1462

Abstract

ABSTRACT The arabinose-inducible promoter P BAD is subject to all-or-none induction, in which intermediate concentrations of arabinose give rise to subpopulations of cells that are fully induced and uninduced. To construct a host-vector expression system with regulatable control in a homogeneous population of cells, the araE gene of Escherichia coli was cloned into an RSF1010-derived plasmid under control of the isopropyl-β- d -thiogalactopyranoside-inducible P tac and P taclac promoters. This gene encodes the low-affinity, high-capacity arabinose transport protein and is controlled natively by an arabinose-inducible promoter. To detect the effect of arabinose-independent araE expression on population homogeneity and cell-specific expression, the gfpuv gene was placed under control of the arabinose-inducible araBAD promoter ( P BAD ) on the pMB1-derived plasmid pBAD24. The transporter and reporter plasmids were transformed into E. coli strains with native arabinose transport systems and strains deficient in one or both of the arabinose transport systems ( araE and/or araFGH ). The effects of the arabinose concentration and arabinose-independent transport control on population homogeneity were investigated in these strains using flow cytometry. The araE , and araE araFGH mutant strains harboring the transporter and reporter plasmids were uniformly induced across the population at all inducer concentrations, and the level of gene expression in individual cells varied with arabinose concentration. In contrast, the parent strain, which expressed the native araE and araFGH genes and harbored the transporter and reporter plasmids, exhibited all-or-none behavior. This work demonstrates the importance of including a transport gene that is controlled independently of the inducer to achieve regulatable and consistent induction in all cells of the culture.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3