fleN , a Gene That Regulates Flagellar Number in Pseudomonas aeruginosa

Author:

Dasgupta Nandini1,Arora Shiwani K.1,Ramphal Reuben1

Affiliation:

1. Department of Medicine/Infectious Diseases, University of Florida, Gainesville, Florida 32610

Abstract

ABSTRACT The single polar flagellum of Pseudomonas aeruginosa plays an important role in the pathogenesis of infection by this organism. However, regulation of the assembly of this organelle has not been delineated. In analyzing the sequence available at the Pseudomonas genome database, an open reading frame (ORF), flanked by flagellar genes flhF and fliA , that coded for a protein (280 amino acids) with an ATP-binding motif at its N terminus was found. The ORF was inactivated by inserting a gentamicin cassette in P. aeruginosa PAK and PAO1. The resulting mutants were nonmotile on motility agar plates, but under a light microscope they exhibited random movement and tumbling behavior. Electron microscopic studies of the wild-type and mutant strains revealed that the mutants were multiflagellate, with three to six polar flagella per bacterium as rather than one as in the wild type, indicating that this ORF was involved in regulating the number of flagella and chemotactic motility in P. aeruginosa . The ORF was named fleN . An intact copy of fleN on a plasmid complemented the mutant by restoring motility and monoflagellate status. The β-galactosidase activities of eight flagellar operon or gene promoters in the wild-type and fleN mutant strains revealed a direct correlation between six promoters that were upregulated in the fleN mutant ( fliLMNOPQ , flgBCDE , fliEFG , fliDS orf126 , fleSR , and fliC ) and positive regulation by FleQ, an NtrC-like transcriptional regulator for flagellar genes. Based on these results, we propose a model where FleN influences FleQ activity (directly or indirectly) in regulating flagellar number in P. aeruginosa .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3