Affiliation:
1. Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama
Abstract
ABSTRACT
Bunyamwera virus
(BUNV) is the prototype of the
Bunyaviridae
family of tri-partite negative-sense RNA viruses. The three BUNV segments possess 3′ and 5′ nontranslated regions (NTRs) that signal two RNA synthesis activities: (i) transcription to generate mRNAs and (ii) replication to generate antigenomes that are replicated to yield further genomes. While the genome acts as a template for synthesis of both transcription and replication products, the antigenome allows synthesis of only replication products, with mRNAs being undetectable. Here, we investigate the basis for the fundamentally different signaling abilities of genomic and antigenomic strands. We show that the identity of only nucleotide position 9 within the genomic 3′ NTR is critical for the different RNA synthesis characteristics of genomic and antigenomic strands, thus identifying this nucleotide as an essential component of the transcription promoter. This nucleotide is distinctive, as it interrupts an unbroken run of conserved complementary nucleotides within the 3′ and 5′ NTRs of all three segments. Our results show that the conserved mismatched arrangement of this nucleotide plays no detectable role in signaling transcription. Instead, we show that the transcription-signaling ability of this position is entirely dependent on its nucleotide identity. We further show that while a U residue at 3′ position 9 is strongly preferred for transcription activity in the context of the genomic promoter, it does not signal transcription in the context of the antigenomic promoter. Therefore, our results show that the identity of 3′ position 9 is crucial for signaling BUNV transcription; however, it is not the sole determinant.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献