Selective Lymphocyte Depletion during the Early Stage of the Immune Response to Foot-and-Mouth Disease Virus Infection in Swine

Author:

Díaz-San Segundo Fayna1,Salguero Francisco J.12,de Avila Ana1,Fernández de Marco M. Mar2,Sánchez-Martín Miguel A.1,Sevilla Noemí13

Affiliation:

1. Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain

2. Departamento de Anatomía y A. Patológica Comparadas, Universidad de Córdoba, Campus de Rabanales, 14014 Córdoba, Spain

3. Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain

Abstract

ABSTRACT Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious vesicular disease of cloven-hoofed animals. In the present study we use FMDV serotype C infection of swine to determine, by analytical techniques, the direct ex vivo visualization of virus-infected immune cells during the first 17 days of infection. We report, for the first time, that FMDV C-S8c1 can infect T and B cells at short periods of time postinoculation, corresponding with the peak of the viremia. There is a significant lymphopenia that involves CD3 + CD4 CD8 +/− , CD3 + CD4 CD8 + Tc, and CD3 + CD4 + CD8 + memory Th but not CD3 + CD4 + CD8 naïve Th lymphocytes. In addition, a profound depletion of the vast majority of peripheral T cells in lymph nodes and spleen is observed. This selective depletion of T cells is not due mainly to in situ death via apoptosis as visualized by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique. Thus, early infection of T cells by FMDV may be the main cause of the observed T-cell depletion. Importantly, this lack of T cells is reflected in a reduced response to mitogen activation, which in many cases is totally eliminated. These data suggest a mechanism by which the virus causes a transient immunosuppression, subvert the immune systems, and spreads. These results have important implications for our understanding of early events in the development of a robust immune response against FMDV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3