Novel Method Based on “En Passant” Mutagenesis Coupled with a Gaussia Luciferase Reporter Assay for Studying the Combined Effects of Human Cytomegalovirus Mutations

Author:

Drouot Emilien1,Piret Jocelyne1,Boivin Guy1

Affiliation:

1. Research Center in Infectious Diseases, Laval University, Quebec City, Quebec, Canada

Abstract

ABSTRACT Human cytomegalovirus (HCMV) resistance to antivirals is a major problem in immunocompromised patients. Drug resistance is characterized by phenotypic testing or genotypic analysis of the phosphotransferase (UL97) and DNA polymerase (UL54) genes. However, genotypic assays require further characterization of unknown mutations in the drug resistance phenotype. Here, we describe a novel method for generating single or multiple mutations anywhere in the HCMV genome and for studying their effects on drug susceptibility. This method is based on cloning of the reference AD169 strain in a bacterial artificial chromosome and the use of “en passant” mutagenesis in bacteria to introduce mutations in recombinant HCMV without scar sequences. We also used this methodology to introduce the Gaussia luciferase reporter gene into the genome of the recombinant virus. To validate our system, the well-characterized single mutants with UL97 A594V and UL54 E756K mutations as well as the undescribed A594V/E756K double mutant were generated and their drug susceptibility profiles were determined by measuring the luciferase activity in cell culture supernatants. Drug susceptibility phenotypes for the A594V (8.2-fold increase in ganciclovir 50% effective concentration [EC 50 ]) and E756K (1.9-, 3.9-, and 3.0-fold increases in ganciclovir, foscarnet, and cidofovir EC 50 s, respectively) mutants were similar to those previously reported, while the double mutant exhibited 10.8-, 4.1-, and 2.0-fold increases in ganciclovir, foscarnet, and cidofovir EC 50 s, respectively. The combination of the Gaussia luciferase reporter-based assay with the markerless “en passant” mutagenesis methodology constitutes an efficient system for studying phenotypes with single or multiple HCMV mutations.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3