Increased gene-specific repair of cisplatin interstrand cross-links in cisplatin-resistant human ovarian cancer cell lines.

Author:

Zhen W,Link C J,O'Connor P M,Reed E,Parker R,Howell S B,Bohr V A

Abstract

We have studied several aspects of DNA damage formation and repair in human ovarian cancer cell lines which have become resistant to cisplatin through continued exposure to the anticancer drug. The resistant cell lines A2780/cp70 and 2008/c13*5.25 were compared with their respective parental cell lines, A2780 and 2008. Cells in culture were treated with cisplatin, and the two main DNA lesions formed, intrastrand adducts and interstrand cross-links, were quantitated before and after repair incubation. This quantitation was done for total genomic lesions and at the level of individual genes. In the overall genome, the initial frequency of both cisplatin lesions assayed was higher in the parental than in the derivative resistant cell lines. Nonetheless, the total genomic repair of each of these lesions was not increased in the resistant cells. These differences in initial lesion frequency between parental and resistant cell lines were not observed at the gene level. Resistant and parental cells had similar initial frequencies of intrastrand adducts and interstrand cross-links in the dihydrofolate reductase (DHFR) gene and in several other genes after cisplatin treatment of the cells. There was no increase in the repair efficiency of intrastrand adducts in the DHFR gene in resistant cell lines compared with the parental partners. However, a marked and consistent repair difference between parental and resistant cells was observed for the gene-specific repair of cisplatin interstrand cross-links. DNA interstrand cross-links were removed from three genes, the DHFR, multidrug resistance (MDR1), and delta-globin genes, much more efficiently in the resistant cell lines than in the parental cell lines. Our findings suggest that acquired cellular resistance to cisplatin may be associated with increased gene-specific DNA repair efficiency of a specific lesion, the interstrand cross-link.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3