Author:
Silve S,Rhode P R,Coll B,Campbell J,Poyton R O
Abstract
Previously, we have shown that the Saccharomyces cerevisiae DNA-binding protein ABF1 exists in at least two different electrophoretic forms (K. S. Sweder, P. R. Rhode, and J. L. Campbell, J. Biol. Chem. 263: 17270-17277, 1988). In this report, we show that these forms represent different states of phosphorylation of ABF1 and that at least four different phosphorylation states can be resolved electrophoretically. The ratios of these states to one another differ according to growth conditions and carbon source. Phosphorylation of ABF1 is therefore a regulated process. In nitrogen-starved cells or in cells grown on nonfermentable carbon sources (e.g., lactate), phosphorylated forms predominate, while in cells grown on fermentable carbon sources (e.g., glucose), dephosphorylated forms are enriched. The phosphorylation pattern is affected by mutations in the SNF1-SSN6 pathway, which is involved in glucose repression-depression. Whereas a functional SNF1 gene, which encodes a protein kinase, is not required for the phosphorylation of ABF1, a functional SSN6 gene is required for itsd ephosphorylation. The phosphorylation patterns that we have observed correlate with the regulation of a specific target gene, COX6, which encodes subunit VI of cytochrome c oxidase. Transcription of COX6 is repressed by growth in medium containing a fermentable carbon source and is derepressed by growth in medium containing a nonfermentable carbon source. COX6 repression-derepression is under the control of the SNF1-SSN6 pathway. This carbon source regulation is exerted through domain 1, a region of the upstream activation sequence UAS6 that binds ABF1 (J. D. Trawick, N. Kraut, F. Simon, and R. O. Poyton, Mol. Cell Biol. 12:2302-2314, 1992). We show that the greater the phosphorylation of ABF1, the greater the transcription of COX6. Furthermore, the ABF1-containing protein-DNA complexes formed at domain 1 differ according to the phosphorylation state of ABF1 and the carbon source on which the cells were grown. From these findings, we propose that the phosphorylation of ABF1 is involved in glucose repression-derepression of COX6 transcription.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献